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Abstract—Current Internet of Things (IoT) embedded ap-
plications use machine learning algorithms to process the col-
lected data. However, the computational complexity and stor-
age requirements of existing deep learning methods hinder
the wide availability of embedded applications. Spiking Neu-
ral Networks (SNN) is a brain-inspired learning methodology
that emerged from theoretical neuroscience, as an alternative
computing paradigm for enabling low-power computation. Since
these IoT devices are usually resource-constrained, compression
techniques are crucial in the practical application of SNNs.
Most existing methods directly apply pruning methods from
artificial neural networks (ANNs) to SNNs, while ignoring the
distinction between ANNs and SNNs, thus inhibiting the potential
of pruning methods on SNNs. In this paper, inspired by the
topology of neuronal co-activity in the neural system, we propose
a dynamic pruning framework (dubbed DynSNN) for SNNs,
enabling us to seamlessly optimize network topology on the
fly almost without accuracy loss. Experimental results on a
wide range of classification applications show that the proposed
method achieves almost lossless for SNN on MNIST, CIFAR-10,
and ImageNet datasets. Moreover, it reaches a ∼ 0.3% accuracy
loss under 34% compression rate on CIFAR and ImageNet, and
achieves 60% compression rate with no accuracy loss on MNIST,
which reveals remarkable structure refining capability in SNNs.

Index Terms—Spiking Neural Network, Dynamic Network,
Accuracy, Edge Devices

I. INTRODUCTION

Artificial Neural Networks (ANNs) achieve significant per-
formance over many tasks, e.g., image recognition [1], natural
language processing [2], game playing [3], etc. However, this
success comes with the ever-increasing computational costs.
The high computational costs make ANNs difficult to deploy
in resource-constrained edge devices [4]–[7]. To improve
computational efficiency, Spiking Neural Networks (SNNs)
are proposed as a promising alternative to traditional deep
learning approaches since they perform event-driven informa-
tion processing [8], [9]. The high energy efficiency of SNNs
stems from two-fold: 1) the sparse spike signals are transmitted
and processed in SNNs; 2) the spike signals enable SNNs to
replace the expensive Multiply-Accumulate (MAC) operations
in ANNs with additions [10].

The key difference between ANN and SNN is the concept of
time [11], [12]. Specifically, ANN performs the feed-forward
pass once to complete a single inference, while SNN needs
to perform the feed-forward pass over multiple time steps
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to complete a single inference. However, the requirement of
neuron computation over the multiple time steps processing
lessens the energy benefits of SNNs [8], [9], [13]. This is
because existing software frameworks or SNN hardware adopt
the time-driven execution mechanism, which makes the energy
consumption and execution speed of SNN proportional to the
number of time steps [14], [15]. With a large number of time
steps, the SNN implementation not only increases the latency
and energy consumption, but also introduces the frequent
memory access of the membrane potential [16], [17]. To tackle
this, one approach is to design a combination of SNN-ANN
hybrid network, which can be leveraged to obtain the same
accuracy as corresponding SNN in fewer time steps [13], [14].
Another route for efficient SNN computation is to use pruning
techniques to significantly improve hardware performance by
reducing the synapses of linked neurons [18], [19].

Several works have explored the applicability of pruning
methods for SNNs. These approaches use pruning to reduce
the number of synapses (similar to weights in ANN), and most
of the analysis still focuses only on small-scale datasets (such
as MNIST) or a certain type of SNN (e.g., directly training
SNNs). In addition, these methods are similar to pruning
applied in ANN, which requires fine-tuning to recover ac-
curacy. More significantly, the feasibility of compressing the
core computational units (i.e., neurons) in SNNs has not been
explored in any of these prior works. Therefore, if the number
of neurons involved in computation can be appropriately
reduced in the SNN, there is scope to improve the energy
efficiency of the SNN further since such neuron compression
is directly correlated with computation.

Inspired by the organizational principle for integration and
interaction of neurons in the neuroscience [20] and dynamic
neural networks, in this paper, we propose a dynamic pruning
method of neurons to improve the energy efficiency of SNN.
SNNs have potential in terms of computational efficiency and
characterization capability if they can dynamically adjust their
structure while processing the input signal. This is because
neurons are the basic computational units of SNN, enabling
decreasing the number of neurons directly reduces the need for
PE in SNN implementation. In addition, our pruning method is
not restricted by the structural pruning applied in ANNs since
the processing elements (PEs) are executed independently and
in parallel in the SNN implementation.

Our contributions can be summarized as follows:
• We propose DynSNN, a SNN pruning framework for
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Fig. 1. Illustration of the workload varying in SNN types for spiking neural networks and an example about the image is converted into the
spike train by various encoding methods. (a) general ANNs; (b) ANN-converted SNNs; (c) directly training SNNs using error backpropagation;
(d) rate coding scheme; (e) temporal coding scheme. The time window represents the length of the spike train, which is equal to the number
of time steps.

exploring the efficient and accurate SNN by removing
neurons on the fly to make the trade-off between appli-
cation accuracy and execution cost.

• We explore the feasibility of DynSNN by applying it to a
wide variety of SNNs and discover the different operating
mechanisms.

• The evaluation shows that directly trained SNN using
DynSNN can achieve 60% compression rate without ac-
curacy loss during training, and ANN-converted SNN can
achieve 34% averagely compression rate with < 0.3%
accuracy loss.

II. SNN PRELIMINARIES

Biologically-inspired spiking neural networks are regarded
as the third generation of neural networks developed to process
information more similar to biological neural networks [21],
[22]. SNNs have attracted the concentration of researchers
with their rich information in the spatio-temporal domain,
diverse coding mechanisms, and event-driven advantages. Un-
like ANNs, SNNs are potentially capable of dealing with
large volumes of data and using sparse binary spike events
for information representation, leading to more power-efficient
computation and communication primitives in specialized neu-
romorphic hardware.

In SNNs, neurons and synapses serve as the basic processing
units and basic storage elements, respectively. The information
is exchanged and transmitted among neurons via discrete ac-
tion potentials or spikes [23]. Specifically, the typical structure
of the neuron consists of three main parts: dendrite, soma,
and axon [24]. The dendrite collects input spikes from other
neurons and transmits them to the soma; the soma acts as
a central processor, generating spikes (i.e., action potentials)
when the membrane potential exceed a certain threshold
caused by accumulating received spikes. The spikes propagate
along the axon and are transmitted to the next neuron through
synapses located at the end of the axon [5], [25].

Current SNNs can be categorized into ANN-converted SNN
and directly trained SNNs consisting of supervised and unsu-

pervised learning. For unsupervised learning, the mainstream
learning method utilizes the spike timing-dependent plasticity
rule (STDP). However, it is limited to shallow SNNs with
small layers and yields much lower accuracy than ANNs on
complex datasets (e.g., only 66.23% on CIFAR-10 [26]). On
the other hand, the supervised methods represented by error
backpropagation with surrogate functions can achieve better
performance than the unsupervised ones, but they still can not
provide compatible results with ANNs in large datasets.

Directly adapting the parameters of ANNs into SNNs,
known as ANN-converted SNNs [9], [27]–[29] are converted
from the pre-trained ANNs by replacing the activation function
(e.g., Rectified Linear Unit (ReLU)) in ANNs with neuron
function. Its network structure is usually the same as the source
ANN, and network parameters are transformed from the source
ANNs by simple operations such as scaling. By this method,
the state-of-the-art methods for training ANN can be used
to construct ANN-Converted SNNs and achieve competitive
accuracy and the widest applicability, even on large datasets
such as ImageNet.

III. DYNSNN FRAMEWORK

Overfitting due to parameter redundancy is a well-known
problem for neural networks, including ANNs and SNNs. The
pruning method is a successful way to avoid this problem.
Here, we use pruning in SNNs. That is, we selectively mask
some useless or even negatively acting neurons during the
propagation of SNNs. The reduction in the number of neurons
results in significant improvement in the efficiency of the SNN
inference phase.

Recent research published in Nature Neuroscience [20] sug-
gests that when new memories are created, it takes forgetting
old experiences to free up storage space. This suggests that
neurons act in different roles from each other. Inspired by
this observation, we propose a bio-inspired pruning framework
combined with dynamic neural networks, called DynSNN.
Unlike general pruning methods that migrate directly from the
ANN domain, DynSNN explores the contribution of neurons
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Fig. 2. Schematic of DynSNN applied in the SNN training process.

to the network’s overall performance from the SNN itself. This
aims to reduce the useless or even negatively acting neurons
to improve the overall performance of the network and reduce
the energy consumption of the SNN.

High-activity principal cells form the core of each memory,
while low-activity cells enable their crosstalk. This reveals
an organizational principle for continuous integration and
interaction of memories. Based on these, to further measure
the cellular activity (i.e., neuron activity in the SNN), we count
the spike fired rate for each neuron as follows:

FSR =
#fired spikes
#time steps

(1)

A higher value of the neuron activity means the larger number
of spikes fired by the neuron, resulting in a greater contribution
of this neuron to the whole SNN. If the activity of a neuron
is low, we consider that this neuron has a low contribution to
the SNN and can be eliminated, and we call these neurons as
“fading neurons”. In this case, the SNN that contains fading
neurons may not achieve optimal performance.

The goal of DynSNN is to learn the patterns of the network
topology in each SNN, such that if a new SNN was introduced,
our design could recognize the better network topology to
which it belongs. This process of identifying the FSR can
occur either in SNN training or in inference. Specifically, the
synapses connecting the neurons in the SNN may be small or
even negative (based on the backpropagation of the weight
update), making it difficult for the accumulated membrane
voltage of the neuron to reach the threshold voltage over time
steps. This inhibits the firing spike frequency of the neuron,
which means the neuron transmits less information or even no
information. Then it can be considered as an “fading neuron”
that has no contribution to the final prediction of SNNs.

For general pruning methods (both ANN and SNN), con-
nection pruning based on magnitude thresholding (i.e., weight
pruning) leads to unstructured sparsity that is difficult to be
exploited in the hardware implementation. Fortunately, for
DynSNN, this is not a problem. The reason is that in the
hardware implementation of SNN, neurons are used as the
base computational unit, i.e., the neuron calculation is mapped

to the PE. In this way, directly reducing neurons in DynSNN
not only does not add additional overhead but also directly
reduces hardware resources.

Therefore, in the inference phase, we identify the fading
neurons by the threshold determined during training and mask
off these neurons from the SNN computation. To further
improve the performance of SNN, we apply DynSNN in
the training phase, as shown in Fig. 2, where we reactivate
neurons by randomly initializing the weights connecting the
neuron after identifying the fading neurons. If the neuron still
shows the fading trend after the reactivation, these neurons are
removed from the network topology.
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Fig. 3. The change in firing rate value before and after applying DynSNN
to neurons in the hidden layer for the directly trained SNN with three-layer
fully connected layers.

It is worth mentioning that our method has more significant
performance improvement for SNNs based on time-based
encoding. The spike train generated by a time-based encoded
SNN belongs to one-hot coding, i.e., the neuron generates the
spike train with at most a single spike signal, such that this
signal carries a large amount of information (spatio-temporal
information). If the SNN has some fading neurons in the
network topology due to the learning problem, limiting their
training results. In this case, with our DynSNN, these neurons
can be given a second chance to be reactivated and adjust the
topology of the network again. Fig. 3 represents the values of
the firing rate of a part of neurons in the hidden layer obtained
from the directly trained SNN. The directly trained SNN
consists of 3 fully connected layers (784-1000-10); the x-axis
represents the neuron index, and the y-axis represents the firing
rate value. The blue line in Fig. 3(a) and Fig. 3(b) indicate the
value of the firing rate in the hidden layer that needs to be
reactivated and those that need to be pruned, respectively. The
reported accuracy is the classification accuracy of the SNN
trained on the MNIST dataset.



TABLE I
DYNSNN PERFORMANCE ON VARIOUS SNNS.

Acc. of DynSNNSNN Type Network
Structure

Encoding
Method DataSet Acc. of

Baseline Reactived Pruned
Acc.
Drop

Comp. Rate
of Topology

SNN-T [30] (ICASSP) SNN training 784-340-10 Temporal MNIST 97.9% 98.3% 98.0% +0.1 53.71%
STiDi-BP [31] (Neurocomputing) SNN training 784-500-10 Temporal MNIST 97.4% 98.1% 97.7% +0.3 62.33%
BP-STDP [32] (Neurocomputing) SNN training 784-1000-10 Rate MNIST 96.6% 97.2% 96.9% +0.3 64.81%
RMP-SNN [28] (CVPR) ANN-to-SNN ResNet-20 Rate CIFAR-10 91.36% - 91.13% -0.23 37.13%
VGGNet [29] (Frontiers in Neuroscience) ANN-to-SNN VGG-16 Rate ImageNet 69.96% - 69.65% -0.31 31.71%

IV. EVALUATION AND DISCUSSION

A. Experimental Setup

We describe the functionality of the proposed DynSNN
using a Pytorch framework. To assess the performance of
the proposed DynSNN, we apply the DynSNN over two
types of SNN, including directly trained SNN and ANN-
converted SNN, on the image recognition benchmarks, namely
MNIST, CIFAR-10, and ImageNet datasets. For the MNIST
dataset, we consider directly trained SNN with the three-layer
fully connected SNN network structure (Input-Flatten (784)-
340/500/1000-IF-10-IF) as in previous works. For the directly
trained SNN, we randomly initialize the synaptic weights in
the ranges [1, 10] for input and hidden layers and [20, 50]
for the classification layer. We apply DynSNN in the SNN
training process. On the ImageNet and CIFAR-10 datasets,
we use ANN-converted SNN proposed in our previous work
to evaluate our DynSNN. We use a Poisson encoder in the
open-source SNN framework SpikingJelly [33] to convert
the static image into a spike train over the time steps. For
the ANN-converted SNN, We adopt the identical weights
initialization as [34] and train ANN without bias terms and
batch normalization, according to [27], [35]. Upon ANN-SNN
conversion, we apply DynSNN on the inference.
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Fig. 4. Accuracy of SNN with three-layer fully connected layers, trained using
spike-based error backpropagation on MINIST dataset, versus the number of
identified fading neurons.

B. Discussion

Tab. I summarizes the compression performance of various
SNN on MNIST, CIFAR-10 and ImageNet datasets. Directly
trained SNNs composed of three fully-connected layers, using
DynSNN, offer the opportunity to adjust the network topology

TABLE II
PERFORMANCE COMPARISON BETWEEN DYNSNN AND PREVIOUS

PRUNING WORKS ON MINIST DATASET.

Pruning
Methods SNN Type Arch. Acc. (%) Acc.

Drop(%)
Comp.
Rate

Deep R [36] SNN training LSNN 93.70 +2.70 88%
ADMM [37] SNN training LeNet-5 like 99.07 -0.43 60%
Grad R [35] SNN training 3 FC 98.92 -0.33 74.29%
this work SNN training 3 FC 99.23 -0.02 57.4%
this work SNN training 3 FC 98.98 -0.27 69.7%
this work ANN-to-SNN LeNet 99.15 -0.35 61.5%

again during training, yielding higher accuracy. Specifically,
before the pruning, DynSNN first sets the FSR for iden-
tifying the fading neurons. Then, it exploits the identified
fading neurons to adjust the network topology. At the end
of the training, DynSNN prunes the neurons that are still in
the fading state in the adjusted topology according to FSR.
The results show that DynSNN in hybrid mode can achieve
high classification accuracy and fast training. Moreover, it
can achieve a high compression rate (> 60%) with accu-
racy lossless. Tab. I also shows the classification accuracy
of ANN-converted SNN using DynSNN in the inference.
In terms of compression performance, DynSNN can prune
ANN-converted SNNs with ResNet-20 and VGG-16 network
structure > 34% with < 0.3% averagely accuracy drop. It can
enable energy- and memory-efficient inference in edge devices
for low-complexity tasks. We also compare our proposed Dyn-
SNN to other state-of-the-art pruning methods of SNNs, and
the results are listed in Tab. II, from which we can find that the
proposed method outperforms previous works. Note that for
Deep R, ADMM-based and Grad R still prune the connectivity
(i.e., the same as pruning weights in the ANN), while our
approach is based on the activity of neurons. Once a neuron is
removed from the network topology, all the connectivities (i.e.,
synapse weights) connected to that neuron are also pruned. In
summary, the performance of DynSNN is comparable to Grad
R and much better than Deep R and ADMM-based methods.
Fig. 4 visualizes the classification accuracy of DynSNN using
various FSR for reactivating the identified fading neurons. Our
evaluation shows that SNN without DynSNN takes a long time
to converge and yields worse performance. However, DynSNN
identifies the fading neurons according to the FSR and exploits
these fading neurons to optimize the training, enabling the
SNN with larger FSRs to take less time to converge. The SNN
performance is better than that without DynSNN.
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